Structure of the aspartic protease plasmepsin 4 from the malarial parasite Plasmodium malariae bound to an allophenylnorstatine-based inhibitor.

نویسندگان

  • José C Clemente
  • Lakshmanan Govindasamy
  • Amrita Madabushi
  • S Zoë Fisher
  • Rebecca E Moose
  • Charles A Yowell
  • Koushi Hidaka
  • Tooru Kimura
  • Yoshio Hayashi
  • Yoshiaki Kiso
  • Mavis Agbandje-McKenna
  • John B Dame
  • Ben M Dunn
  • Robert McKenna
چکیده

The malarial parasite continues to be one of the leading causes of death in many developing countries. With the development of resistance to the currently available treatments, the discovery of new therapeutics is imperative. Currently, the plasmepsin enzymes found in the food vacuole of the parasite are a chief target for drug development. Allophenylnorstatine-based compounds originally designed to inhibit HIV-1 protease have shown efficacy against all four plasmepsin enzymes found in the food vacuole of Plasmodium falciparum. In this study, the first crystal structure of P. malariae plasmepsin 4 (PmPM4) bound to the allophenylnorstatine-based compound KNI-764 is described at 3.3 Angstroms resolution. The PmPM4-inhibitor complex crystallized in the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 95.9, b = 112.6, c = 90.4 Angstroms, with two molecules in the asymmetric unit related by a non-crystallographic symmetry operator. The structure was refined to a final R factor of 24.7%. The complex showed the inhibitor in an unexpected binding orientation with allophenylnorstatine occupying the S1' pocket. The P2 group was found outside the S2 pocket, wedged between the flap and a juxtaposed loop. Inhibition analysis of PmPM4 also suggests the potential for allophenylnorstatine-based compounds to be effective against all species of malaria infecting humans and for the future development of a broad-based inhibitor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallization and preliminary X-ray analysis of the aspartic protease plasmepsin 4 from the malarial parasite Plasmodium malariae.

Plasmepsin 4 from the malarial parasite Plasmodium malariae (PmPM4) is a member of the plasmepsins (Plasmodium pepsins), a subfamily of the pepsin-like aspartic proteases whose ortholog in the malarial parasite P. falciparum is involved in hemoglobin digestion in its digestive vacuole. Crystals of PmPM4 in complex with the small-molecule inhibitor AG1776 have been grown from a precipitant of 15...

متن کامل

Crystal structures of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum.

Plasmepsin I (PMI) is one of the four vacuolar pepsin-like proteases responsible for hemoglobin degradation by the malarial parasite Plasmodium falciparum, and the only one with no crystal structure reported to date. Due to substantial functional redundancy of these enzymes, lack of inhibition of even a single plasmepsin can defeat efforts in creating effective antiparasitic agents. We have now...

متن کامل

Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...

متن کامل

The zymogen of plasmepsin V from Plasmodium falciparum is enzymatically active.

Plasmepsin V, a membrane-bound aspartic protease present in Plasmodium falciparum, is involved in the export of malaria parasite effector proteins into host erythrocytes and therefore is a potential target for antimalarial drug development. The present study reports the bacterial recombinant expression and initial characterization of zymogenic and mature plasmepsin V. A 484-residue truncated fo...

متن کامل

New class of small nonpeptidyl compounds blocks Plasmodium falciparum development in vitro by inhibiting plasmepsins.

Malarial parasites rely on aspartic proteases called plasmepsins to digest hemoglobin during the intraerythrocytic stage. Plasmepsins from Plasmodium falciparum and Plasmodium vivax have been cloned and expressed for a variety of structural and enzymatic studies. Recombinant plasmepsins possess kinetic similarity to the native enzymes, indicating their suitability for target-based antimalarial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta crystallographica. Section D, Biological crystallography

دوره 62 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2006